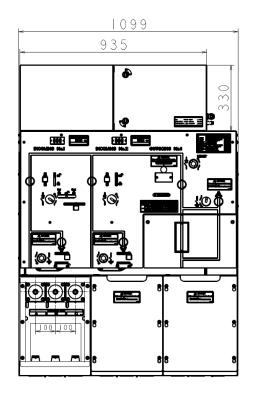


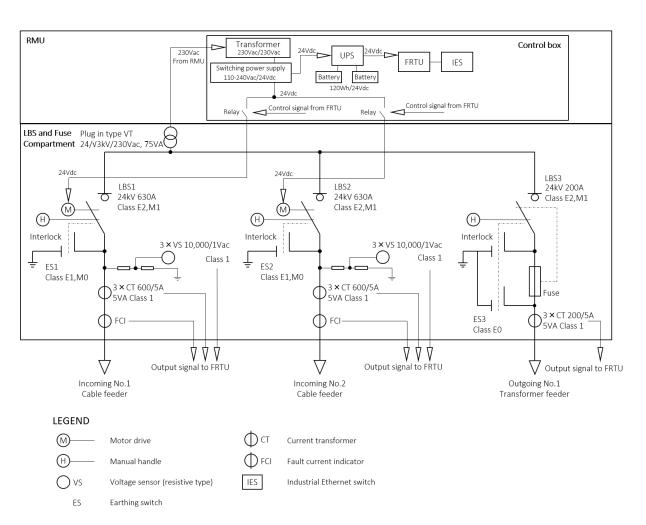
Ring Main Unit [GST20-B-YT] 24 kV SF₆ gas insulated switchgear



	LBS	ES
Mechanical endurance	M1	MO
	1,000 CO	1,000 CO
Electrical endurance	E2	E1

Installation site	Indoor or outdoor with metal enclosure
Minimum ambient temperature	-5 ℃
Maximum ambient temperature	40 ℃
Altitude	Less than 1,000 m above sea level
Rated voltage	24 kV
Rated current	630 A (2-IN), 200 A (1-OUT)
Rated frequency	50 Hz
Rated short time withstand current (LBS, ES)	16 kA _{r.m.s} 1 sec.
Rated short circuit making current (LBS, ES)	40 kA _{peak}
Rated power frequency withstand voltage	50 kV (Dry)
Lightning impulse withstand voltage	125 kV
SF ₆ gas pressure	50 kPa·G (20°C)
Enclosure material	SUS304 stainless steel

Ring Main Unit [GST20-B-YT]


24 kV SF₆ gas insulated switchgear

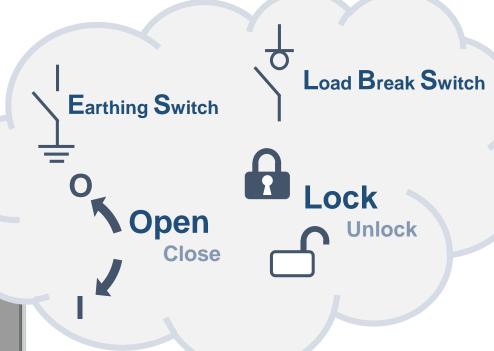
Total mass: 680 kg

Dimensions

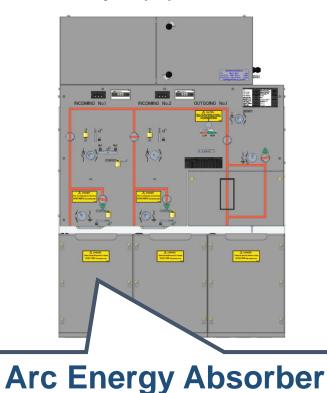
Single line diagram

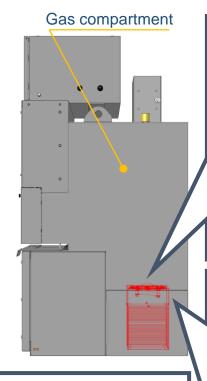
Distinctive Feature of Ring Main Unit

- ► Universal Design Panel
- Internal Arc Safety Device
- Low Gas Interlock System
- ► High Reliable Fuse Holder
- Durable AUX. Switch


Outstanding Performance of Ring Main Unit

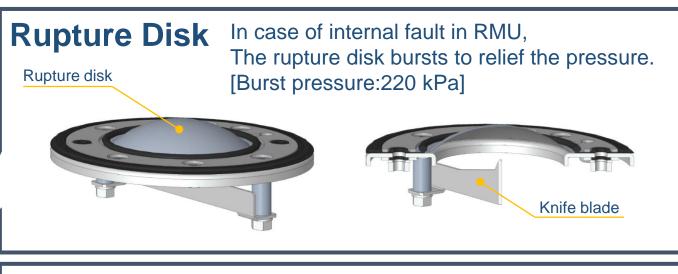
- Fast Tripping with Fuse Striker
- ► Very Low Gas-Leak Rate
- ▶ Durable Operating Mechanism

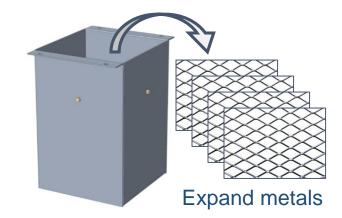

Universal Design Panel

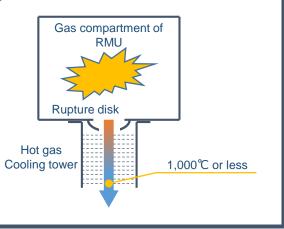

User-friendly interface SKOWA F-E 3 SIGMA F-E 3 **INCOMING No.1 INCOMING No.2 OUTGOING No.1**

Internal Arc Safety Device

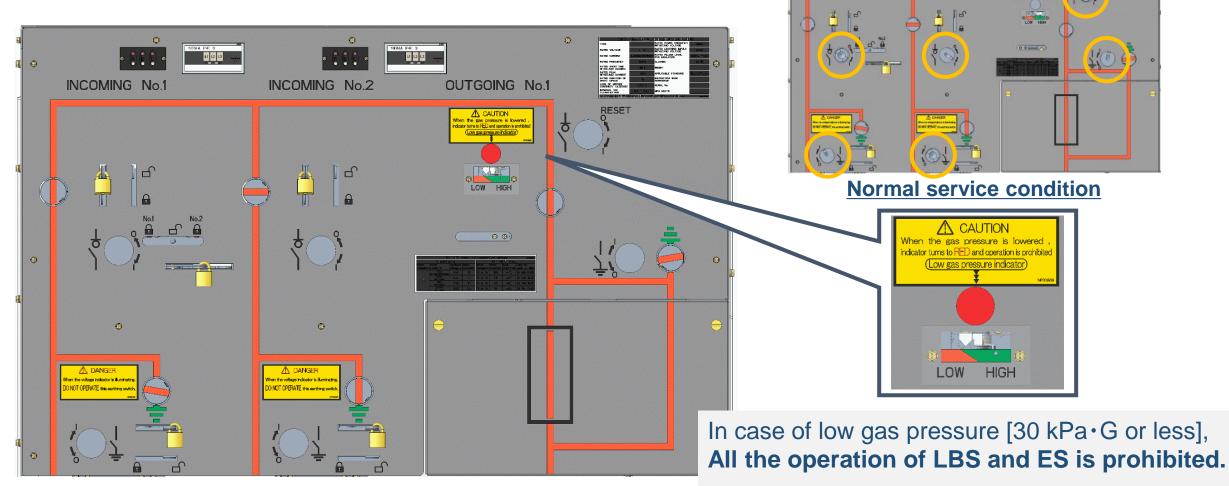
User-safety equipment




This device is a thick iron plate Which is in the cable compartment.

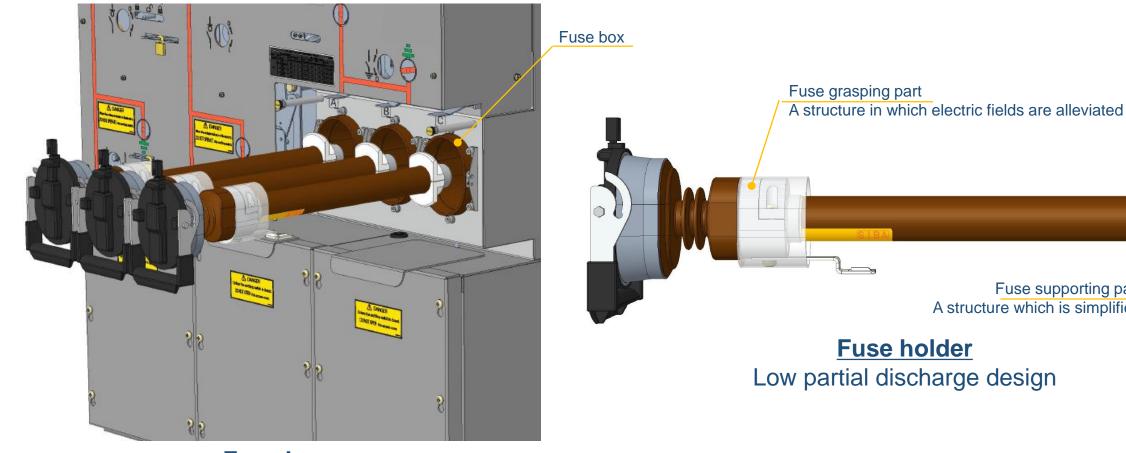

In case of internal fault in there,
By melting the iron plate absorbs the arc energy.

Hot Gas Cooling Tower


This device is like a chimney which has expand metals. These metals remove heat from the hot gas.

Handle insert

User-safety equipment

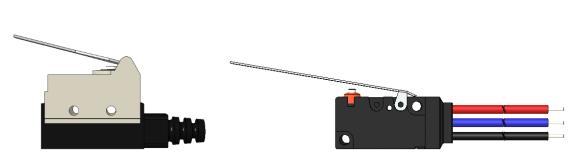


Low gas interlock is activated

- ► Inaccessible to handle inserts.
- **▶** Electrically interlock for remote operation

High Reliable Fuse Holder

Contribution of grid-reliability

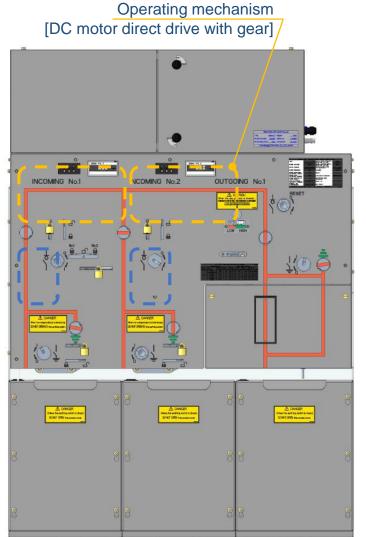

Fuse box [Withdrawn fuse holder]

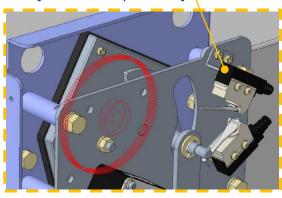
Fuse supporting part

A structure which is simplified

Durable AUX. Switch

Contribution of grid-reliability


Our RMU has "IP 67" AUX. switches.


Ingress IP 6 7

7 Temporary immersion 30 min.

AUX. switch [DC motor operation]

AUX. switch [Main circuit status]

Time

Time

Time

Fast Tripping with Fuse Striker

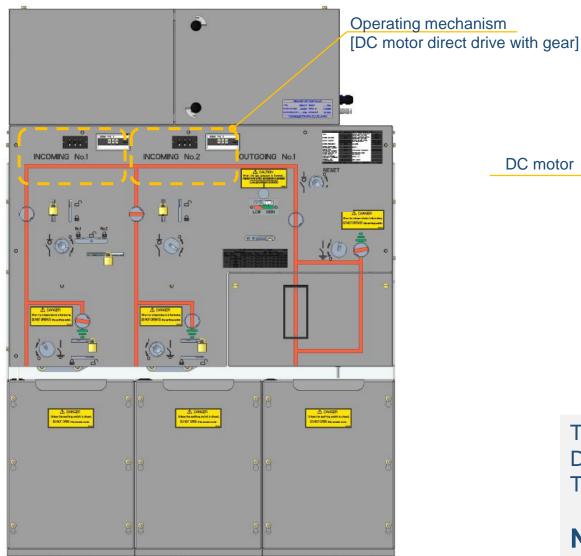
Contribution of grid-reliability Fault current initiation Phase current OUTGOING No. LBS3 **Fuse status Blown** 40 ms or less LBS3 status Fuse Close Open Out going feeder has a LBS and HRC fuse. Trip operation mechanism By mean of the fuse striker it operates [Red highlight] В As a switch-fuse combination. Fuse striker When LBS3 is closed. Fuse holder The spring in the trip operation device is charged to be able to trip.

If the fuse blows, the fuse striker is released

And automatically LBS3 is immediately tripped by mechanical links.

LBS3 on outgoing feeder

Very Low Gas-Leak Rate


Contribution of grid-reliability

Acceptable gas-leak rate As routine test			
0.1 %/year	0.026 %/year		
IEC	Togami		
Rated SF ₆ gas pressure	50 kPa⋅G (20°C)		
Minimum functional gas pressure	25 kPa·G (20°C)		

Durable Operating Mechanism

Contribution of grid-reliability

DC motor

The operating mechanism is a simple linkage and DC motor direct drive with gear.

The gear in the case is protected from dust.

No need to grease in the service life.

Gear inside the protection case

Feature

- ► Universal Design Panel
- ► Internal Arc Safety Device
- ► Low Gas Interlock System
- ► High Reliable Fuse Holder
- ▶ Durable AUX. Switch

Performance

- ► Fast Tripping with Fuse Striker
- ► Very Low Gas-Leak Rate
- ► Durable Operating Mechanism

Make society, Earth, and the future prosperous!

Appendix: Applicable standard

General	IEC62271-1	High-voltage switchgear and controlgear – Part 1: Common specifications for alternating current switchgear and controlgear
Ring main unit (RMU)	IEC62271-200	High-voltage switchgear and controlgear – Part 200: AC metal-enclosed switchgear and controlgear for rated voltages above 1 kV and up to and including 52 kV
Load break switch(LBS)	IEC62271-103	High-voltage switchgear and controlgear – Part 103: Alternating current switches for rated voltages above 1 kV up to and including 52 kV
Switch fuse combination	IEC62271-105	High-voltage switchgear and controlgear – Part 105: Alternating current switch-fuse combinations for rated voltages above 1 kV up to and including 52 kV
Earthing switch (ES)	IEC62271-102	High-voltage switchgear and controlgear – Part 102: Alternating current disconnectors and earthing switches

Appendix : Electrical endurance

Table 3 – Test duties for general purpose switches – Test duties for three-phase tests on three-pole operated, switches

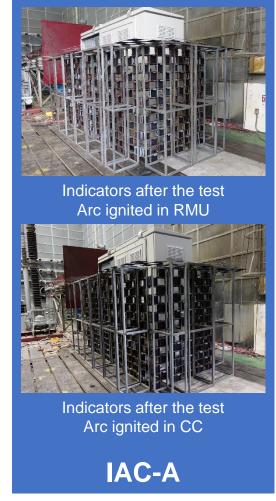
Test duty		Test voltage	Test current	Number of cycles of operations		
Description	TD			Class E1	Class E2	Class E3
Mainly active load current	TD _{load2}	17	I_{load}	10	30	100
	TD _{load1}	U_{r}	$0.05 \times I_{load}$	20	20	20
Closed-loop distribution circuit current	TD _{loop}	0,20× <i>U</i> _r	I_{loop}	10	20	20
Cable-charging current	TD _{cc2}	U_{r}	$I_{\sf cc}$	10ª	10ª	10ª
	TD _{cc1}		0,1 - 0,4×I _{cc}	10ª	10ª	10ª
Line-charging current	TD _{Ic}	U_{r}	I_{lc}	10ª	10ª	10ª
Short-circuit making current	TD _{ma}	U_{r}	$I_{\sf ma}$	2 making operations	3 making operations	5 making operations
Earth fault current	TD _{ef1}	U_{r}	$I_{\sf ef1}$	10	10	10
Cable- and line-charging current under earth faults	TD _{ef2}	U_{r}	$I_{\sf ef2}$	10	10	10

In the case of the switch is defined as a class C2 switch and if one restrike occurs during the test series, 6.101.8 is applicable

Excerpt from IEC62271-105:2011

The key point of Ring Main Unit

Appendix: Type test report



Appendix: Internal arc test

Our RMU is certificated in STL (according to IEC62271-202) With unit substation Type III enclosure

16kA,1 sec. IAC-A(Door open condition)
Arc ignited in the cable compartment (CC)

